
CALSIM Draft Doc Page 1 12/15/00

CALSIM
Water Resources Simulation Model

WRESL Language Reference

Draft Documentation

CALSIM Draft Doc Page 2 12/15/00

Language Overview
The Water Resources Simulation Language (WRESL) was designed to serve as flexible
language interface to the linear programming (LP) solver and databases. Specific
operational rules may be specified in the WRESL language, which in turns formulates the
rules into constraints and objective function terms in the form acceptable to the LP
solver. Data, in the form of timeseries input, prior decision variable values, and relational
table values, are all available to the user when formulating the operational rules.

When writing statements in the WRESL language it is important to recognize the
difference between state variables and decision variables for the time period of interest.
These variables have known constant values for the upcoming period and can be thought
of as the information available to planner/operator prior to any system operation.
Decision variables, on the other hand, are unknown and represent the decisions to be
made for the upcoming period. Thinking in this fashion will greatly expedite the learning
of this language.

WRESL statements are assembled into simple text files with the wresl extension. The
main WRESL file must contain the model and sequence statements that describe the
constraints to be included in a particular simulation and the order in which models should
be solved. Each model contains several include statements which identify the location of
constraints to be considered. Operational constraints can be assembled in multiple wresl
files and placed in directories aptly named for better organization. Several WRESL
language constructs are available to the user in developing constraints or rules for the
water resource system and are discussed in detail below.

Notational Conventions
Bold-faced words or characters represent key words and must be typed exactly as shown.
Italic words denote the names of identifiers or tags of your own creation. If one of several
options is required, those options are shown separated by a vertical bar (|) symbol; if any
item is itself optional, that item appears within [brackets]. Braces ({ }) provide a visual
grouping of statements. You may position braces and indenting according to your
preference, and include optional line breaks and blank lines. You may also omit line
breaks between keywords. The examples in this document show preferred styles of
placement.

Names and Labels
The WRESL name and label character set consist of letters A-Z, digits 0-9, and the “_”
character. Decision and state variable names may be up to 16 characters long. Labels and
other tags may have 32 characters. Mixed case is ignored (like Fortran).

Mathematical and Logical Operators
Mathematical operators in the WRESL language are not as widely used as, but are similar
to, those in other programming languages. Logical operators are used to evaluate
conditional expressions and follow the Fortran90 syntax. A summary of the operators are
shown below:

CALSIM Draft Doc Page 3 12/15/00

Operator Description Operator Type
+ and - addition and subtraction mathematical
* and / multiplication and division mathematical
< less than or equal mathematical
> greater than or equal mathematical
= equal mathematical
<= less than or equal logical
>= greater than or equal logical
== exactly equal logical
.and. logical conjunction logical
.or. logical inclusive disjunction logical
.not. logical negation logical

In addition to the operators shown above, several intrinsic definitions and functions are
available for use in WRESL statements. See intrinsic definitions and functions.

Comments
Comments may be the C/Java format (enclosed in /* and */, or introduced on a single line
by //) or the Fortran 90 style (introduced on a single line by “!”).

Source Form
The WRESL language is somewhat free-format. You may insert blank lines and
comments at any point. Most statements may be on multiple lines without a continuation
character. Semicolons are not allowed at the end of statements. The WRESL file is read
sequentially, in that the statements read and process in the order that they appear in the
file. Note that variables must be declared before they can be used in other statements.

Statements
There are current five kinds of statements in the WRESL language with variations on
each of these. The major statements are listed below followed by a description and
syntax:

• SEQUENCE
• MODEL
• INCLUDE
• DEFINE
• GOAL

SEQUENCE Statements
Sequence statements define the order and optional condition in which to simulate a study
consisting of multiple models. For example, it may be desirable to the modeler to operate
a portion of the water resource system independent of the remaining system. In this case,
the system may be divided into two models: the first including the portion to be operated
independently and the second including the remaining part of the system. The first model

CALSIM Draft Doc Page 4 12/15/00

could then be given the simulation order 1 and the second simulation order 2. The results
of simulating the first model could then be used in the modeling of the second model.
Each model must be given a unique simulation order.

sequence identifier {
model modelName
[condition conditionalExpression]
order orderNumber

}

MODEL Statement
The model construct defines which statements will be part of a particular model
formulation. Again, multiple models may be specified within a study given that they have
a unique simulation order. All define, goal, and include statements must be located within
the model construct.

model modelName {
[INCLUDE Statements]
[DEFINE Statements]
[GOAL Statements]

}

INCLUDE Statement
You may include other WRESL files by inserting and include statement within other
WRESL files. The include statement is similar to Fortran include statements and may be
inserted at the top of a file or between other statements (although, this is not
recommended).

include ‘filename’

DEFINE Statements
The define statement is similar to variable assignments and declarations in other
languages. All variable identifiers must first be declared in a define statement, and
thereafter used in subsequent definitions or goals. It is rather overextended in the current
version, so several variations exist. Each variation will be described separately below.

Continuous Decision Variable Declarations

This form is used to add continuous (non-integer) LP decision variables to the solver’s
formulation. Decision variables are defined using the options below.

define yourIdentifier {
std | boundSpec
kind ‘kindspec’ ! DSS C-part

CALSIM Draft Doc Page 5 12/15/00

units ‘unitspec’ ! DSS units
}

The std indicates that the variable will have the standard LP nonnegativity bounds and
1.0e38 upper bound. Most variables used will be in this category. The boundSpec, used in
lieu of the keyword std, refers to explicit setting of the variable’s lower and upper bounds
(numeric constants only) and follows the syntax below:

upper constant | unbounded
lower constant | unbounded

where unbounded indicates –1.0e38 or 1.0e38.

Binary Integer Decision Variable Declarations

Binary integer LP variables may be included in your model by specifying integer as the
first keyword within the braces. The standard bounds for an integer variable are between
0 and 1.

define yourIdentifier {
integer
std
kind ‘kindspec’ ! DSS C-part
units ‘unitspec’ ! DSS units

}

The use of integer variables is discouraged because they may greatly increase
computation time.

State Variable: Time-Series Input Declarations and Assignments

You may refer to data stored in the input time-series (DSS) database. These values are
utilized in a fashion similar to decision variables from previous time steps. You must
first define the DSS pathname parts to be used for the variable using the following form
of the define statement:

define yourIdentifier {
timeseries [‘b-part’]
kind ‘kindspec’ ! DSS pathname C-part
[units ‘unitspec’] ! DSS units.
[convert ‘toUnits’] ! Units to convert to

}

The B-part of the DSS path name will be set to the name specified as yourIdentifier. The
optional b-part specification, after the timeseries keyword, is used to override the default

CALSIM Draft Doc Page 6 12/15/00

b-part name. The optional convert field will convert between TAF and CFS only. If
‘toUnits’ is ‘CFS’ then a conversion will be performed from TAF to CFS.

External Function Declarations

External functions may be incorporated into the model through the use of an external
function declaration. Declarations must occur before the function is used in a value
statement. LF90 and C++ functions are permitted. For LF90, the code must be compiled
and the object code located in the external directory. For C++, the code must be compiled
into a dynamic-link-library and a LF90 function written to import the DLL. These files
must then be placed in the external directory together with the LIB file. The names of the
object and LIB files must be the same as the function name used in the WRESL
statement. External functions must be specified as the lf90 or dll variety. Lf90 is the
default type.

define functionName {
external
[lf90] | [dll] ! type of function

}

State Variable: Constant Value Assignments

Constant value assignments are used to hold intermediate state variable information that
may be used in subsequent goal or conditional statements. All variable value definitions
are held constants during the LP solution process as state variables.

define identifier {
value expression

}

State Variable: Table Lookup Value Assignments

This form retrieves a value from a relational database table. The facility is quite powerful
and flexible.

define identifier {
select result
from tablename
[given field=valueExpr
use linear | max | min]
[where field=valueExpr [,field=valueExpr] …]

}

Specify the use clause when and only when you specify the given clause. You can
specify either or both of the where clause or the given/use clauses. This statement form
will be translated into a function call that retrieves data from a relational database table.

CALSIM Draft Doc Page 7 12/15/00

State Variable: Sum Value Assignment

The sum value assignment allows you to specify the definition to be equal to the sum of
an expression while using an index. i is the counter, ibeg is the initial value, iend is the
stop criteria, and istep is the step size for this DO-LOOP type structure. This is especially
powerful for summing values of timeseries variables using the index to represent the time
offset:

define identifier {
sum(i=ibeg,iend[,istep]) expression

}

Value Assignment Based On Conditions

State variable values may be assigned based upon whether one or several conditional
statements are true. An example of a conditional value definition is below. (Remember,
the vertical bar “|” means “or,” that is, you may type either the items to the left or to the
right of the bar, not the bar itself and not both).

define userIdentifier {
case ConditionIdentifier1 {

condition conditionalExpression
constant or lookup table value assignment

}
case ConditionIdentifier2 {

condition conditionalExpression | always
constant or lookup table value assignment

}
…
}

ConditionIdentifier is an alphanumeric tag that will be used by the program to label
which condition was being used during that time step. Each conditionalExpression is
evaluated in the order they are specified, until one evaluates as true. Subsequent
statements are skipped. This is just like a Fortran if-then-elseif-endif block.

ConditionalExpression is an equation or an inequality, or a group of these separated by
.and., .or., or .not.. Parentheses are allowed, as are intrinsic functions. The main
restriction on ConditionalExpression is that it may not contain any current-period
decision variables. In lieu of a conditionalExpression, you may specify the keyword
always. Such a condition will always evaluate true, and that case will always be selected
unless a prior case evaluated true.

The conditions are evaluated in the order specified until one evaluates to true. When this
happens, the userIdentifier will be symbolically equated to the expression is the value
assignment. The final condition must be specified as always for a default case.

CALSIM Draft Doc Page 8 12/15/00

Note that these are not operating constraints or targets. All value assignments are merely
definitions of terms that will be used later to specify constraints or targets in the goals
section.

Alias Variable Declaration and Assignment

You can also define a new variable as an alias decision variable. These help a great deal
with brevity as well as being useful for understanding the model’s output. You may
include linear combinations of other previously defined decision variables here.

define userIdentifier {
alias expression
kind ‘kindspec’ ! DSS C-part
units ‘unitspec’ ! DSS units

}

You may use this decision variable in Goal statements, or not if you wish. In either case,
its value will be available in the output DSS database for post-execution reporting. By
default, alias variables are unbounded upper and lower.

GOAL Statement
Goal statements are used to specify system operating constraints and targets and are
directly translated into LP constraints. Goals can be specified as having definitions that
might change each time step, just like for value definitions. In addition, goals can be
specified as “hard” constraints in which the LP constraint must be satisfied, or as “soft”
constraints in which the LP constraint may be violated subject to some penalty.

These goals are expressed in the form of an equation or an inequality. In WRESL, as in
other LP simulation languages, a right-hand-side (RHS) and a left-hand-side (LHS) of the
constraint are specified. Optionally penalties may be assigned for violation of the
constraint. Develop your expressions so that they make sense using the LHS/RHS
concept: outflow = inflow; delivery <= demand; inflow - release = change in storage.

The words “LHS” and “RHS” are for convenience only and are different from the
theoretical LP meaning of the terms. Decision variable terms and constant terms may
both appear on either the left or right side of WRESL expressions.

The goal statement allows for a long and short form.

Goal Statement: Long Form
This is where objectives and constraints on the underlying model are specified. We are
presently using an LP solver, meaning that every goal must be a linear expression of
decision variables.

Here is the long format of a goal.

goal goalIdentifier {

CALSIM Draft Doc Page 9 12/15/00

lhs expression

case ConditionIdentifier1 {
condition conditionalExpression | always
rhs expression;
[lhs>rhs penalty penaltyExpr | never | constrain]
[lhs<rhs penalty penaltyExpr | never | constrain]

}
case ConditionIdentifier1 {
condition conditionalExpression | always
rhs expression;
[lhs>rhs penalty penaltyExpr | never | constrain]
[lhs<rhs penalty penaltyExpr | never | constrain]
}..

}

The same restrictions are in force for the expression terms here as for the alias define
statement. The parser will forbid inappropriate use of decision variables.

Conditions will be evaluated in the order they are presented until the program reaches one
that evaluates to true, similar to the value define statement. The keyword always is
equivalent to Fortran .true.

If the lhs>rhs or lhs<rhs statement is omitted, or never or constrain is specified instead
of penalty, the specified constraint will be a hard constraint. There will be a bound
applied, and the solver will not be allowed to violate it. Note that “<” means “<=” and
“>” means “>=” in LP lingo. Penalty values are generally expressed using constant
values and are often zero.

There is a shorthand form, similar to the define shorthand form. If there are no associated
conditionals, then you can omit the conditionIdentifier and the attached baggage, and
simply write,

goal goalIdentifier {
lhs expression
rhs expression
[lhs>rhs penalty penaltyExpr | never | constrain]
[lhs<rhs penalty penaltyExpr | never | constrain]

}

Goal Statement: Short Form
There is a even more concise form for expressing traditional LP constraints. Omit all
tags except the goal tag and specify a comparison expression using <, >, or =. This is the
preferred method for specifying constraints without associated conditions or penalties.

CALSIM Draft Doc Page 10 12/15/00

goal tagname {
expr1 < | = | > expr2

}

Previous Time Step Values
In define and goal statements, you may refer to the values of any timeseries variable up to
12 time periods prior to the current period. Additionally, input timeseries variables may
accessed up to 12 time periods ahead of the current period. Thus, the resulting values
from previous time periods are available for determining the state of the system and
future input values are available for forecasting purposes. This time period offset access
is performed by adding a suffix to the decision variable name, of the form

Variablename(offsetExpression)

For example, S11(-1) might refer to the storage in reservoir 11 one time step ago.
OffsetExpression must of course evaluate negative for decision variables and aliases, and
must be nonzero. This same form is used for timeseries input variables. Omitting the
suffix in parentheses causes WRESL to use the value from the current model time step.
You can specify both previous and future values (future values are positive).

Model Scoping Issues
CALSIM allows the decision maker to specify multiple models to be simulated in a
particular order. The modeler decides which parts of a system should be included in
which models and the order in which to simulate the models. The decision variable
results of each higher order model (ie. simulated prior to the current model) are
accessible in the current model by using the variable name followed by [modelName].

WRESL also includes scope, a term used to describe whether particular statements and
variables are accessible outside of the parent model. The bracketed kewords [local] and
[global] are used for this purpose. If keywords include , define , or goal are directly
followed by [local] then this statement will only apply to the model in which the
statement exists. However, if this keyword is absent (or [global] of specified) the
statements apply to the current model and all subsequent models.

CALSIM Draft Doc Page 11 12/15/00

Intrinsic Definitions and Functions
The following definition and function names are reserved words in WRESL. They are
intrinsic to CALSIM and may not be redefined. Use them in any state variable value
assignments, conditional expressions, or any other expression. However, decision
variables may not be used as arguments in any of the functions as this would imply the
variable’s value is already know (which by definition it is not).

Definition/Function Description
daysin Number of days in current time step
month Month number of the water year (October=1, January=3)
wateryear Four-digit water year, runs Oct.-Sept.
MMM Month number of water year (OCT=1,JAN=3)
prevMMM Previous month number of water year

(prevOCT=-2 in DEC)
cfs_taf(offset) Returns a multiplier that converts a given quantity in cubic

feet per second to thousands of acre-feet per time step
where the optional “offset” is relative time step position
from the current timestep.

taf_cfs(offset) Returns a multiplier that converts a given quantity in
thousands of acre-feet per time step to cubic feet per
second where the optional “offset” is relative time step
position from the current time step.

pow(a,b) Returns the value of “a” raised to the power of “b”
abs(a) Returns the absolute value of “a”
int(a) Returns an integer representation of “a”
real(a) Returns a real/float representation of “a”
exp(a) Returns the exponential of “a” … ea

log(a) Returns the natural logarithm of “a”
log10(a) Returns the common logarithm of “a”
sqrt(a) Returns the square root of “a”
max(a,b,c,…) Returns the maximum value of a,b,c …
min(a,b,c,…) Returns the minimum value of a,b,c …
mod(a,b) Returns the remainder of “a” divided by “b”

